POILANEIC ACID, A CEMBRANOID DITERPENE FROM CROTON POILANEI

AIYA SATO, MASAAKI KURABAYASHI, AKIRA OGISO and HARUMITSU KUWANO

Central Research Laboratories, Sankyo Co. Ltd., 1-2-58 Hiromachi Shinagawa-ku, Tokyo 140, Japan

(Received 14 November 1980)

Key Word Index—Croton poilanei; Euphorbiaceae; cembranoid diterpene; poilaneic acid.

Abstract—Poilaneic acid, a cembranoid diterpene from *Croton poilanei*, has been characterized as (1R*,2E,4Z,7E,11Z)-12-carboxyl-1-isopropyl-4,8-dimethylcyclotetradecatetraene.

INTRODUCTION

In the course of a chemotaxonomic study of the genus *Croton*, which grows wild in Thailand [1,2], we isolated poilaneic acid (1a), a cembranoid diterpene, from *Croton poilanei* Gagnep. [3]. Although cembranoid diterpenes have been isolated from a variety of terrestrial as well as marine sources [4–16], there have been no reports of their isolation from *Croton* sp. We now report the characterization of poilaneic acid (1a).

RESULTS AND DISCUSSION

Silica gel chromatography of n-hexane-soluble acidic material from C. poilanei gave poilaneic acid (1a), mp 94–95°, $[\alpha]_D^{25}$ –136.8° (CHCl₃). High resolution MS gave a MW consistent with the formula $C_{20}H_{30}O_2$ (calc: 302.2245. found: 302.2241). Its ¹H NMR spectrum indicated that 1a possessed an isopropyl group (δ 0.80 and 0.84), two olefinic methyl groups (δ 1.66 and 1.82), and five olefinic protons (δ 5.0-6.2). Moreover, its ¹³C NMR spectrum showed the presence of eleven sp³ carbons (4 quartets, 5 triplets and 2 doublets), eight sp² carbons (5 doublets and 3 singlets) and a carboxyl carbon. Its UV spectrum, $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 223 (4.1), 245 (sh), 255 (sh), showed the presence of a conjugated diene and an α, β -unsaturated carboxylic acid ($v_{\text{max}}^{\text{nujol}}$ cm⁻¹: 1680). Catalytic hydrogenation of the methyl ester of 1a (1b) over Pt gave a mixture of epimeric octahydro derivatives (2), which confirmed that 1a contained four double bonds and had a cembranoid skeleton.

To determine the gross structure, 1b was reduced with LiAlH₄ to give the alcohol 3, mp 92–94°, $\lambda_{\rm max}^{\rm EiOH}$ nm (log ε): 238 (sh), 244 (4.4), 253 (sh), and then 3 was converted to (–)-cembrene (4), mp 58–58.3°, $[\alpha]_{\rm max}^{25}$ –232° (CHCl₃), on treatment of the corresponding mesylate with LiAlH₄. The (–)-cembrene obtained [16] was identical with (+)-cembrene [17–19] in all physiochemical data except for the sign of optical rotation. This established that poilaneic acid (1a) had the cembrene skeleton with R-chirality at C-1 and that one of three olefinic methyl groups in (–)-cembrene was biogenetically oxidized to a carboxyl group.

On treatment with m-chloroperbenzoic acid in CH_2Cl_2 at -20° , 1b initially gave the labile epoxide 5, as a major product, together with a small amount of 6. The epoxide 5 was readily cleaved to the glycol mono m-chlorobenzoate

(7a) on standing at ambient temperature, and during separation on silica gel, the ester 7a was easily hydrolysed to the glycol 7b as the final product. The UV spectrum of 7b, $\lambda_{\max}^{\text{EtOH}}$ nm (log ε): 223 (4.1), showed the absence of the conjugated diene chromophore and the high-field shift of the methyl signal (δ 1.36) in the ¹H NMR spectrum indicated that the methyl group was situated on the conjugated diene and that the carboxyl group was on the other double bond.

Oxidative cleavage of 7b with NaIO₄ in aqueous dioxane followed by NaBH₄ reduction gave the diol 8, which was refluxed over MnO₂ in CHCl₃ to yield the α,β -unsaturated ketone 9, UV $\lambda_{\max}^{\rm EiOH}$ nm (log ε): 222 (4.1), IR $\nu_{\max}^{\rm lixid}$ cm⁻¹: 3430, 1715, 1675. In the ¹H NMR spectrum of 9, irradiation of the triplet at δ 5.14 (H-3) sharpened the broad singlet at δ 1.64 (Me-4) and collapsed the signal at δ 2.29 (H-2) to a triplet. Moreover, on irradiation of the signal (H-2), the triplet at δ 3.59 (H-1) collapsed to a singlet. These results agreed with the structure 9, indicating that the carboxyl group was situated at C-12 in 1a. Consequently, poilaneic acid was identified as $(1R^*, 2E, 4Z, 7E, 11Z)$ -12-carboxyl-1-iso-propyl-4,8-dimethylcyclotetradecatatetraene.

EXPERIMENTAL

Extraction and isolation. Powdered leaves (3.3 kg) of C. poilanei were extracted with MeOH under reflux. After evapn of the solvent, the residue was dissolved in 80% aq. MeOH and extracted with n-hexane. The n-hexane extract was concd to a yellow-green oil (144 g). A soln of the extract (100 g) in n-hexane (400 ml) was swirled with 5% NaOH (400 ml) at ambient temp. The aq. layer was acidified with conc. HCl with cooling at 0°, and extracted with n-hexane. After usual work-up, the residue (70 g) was subjected to Si gel column chromatography. Elution with C₆H₆ gave colourless crystals, which were recrystallized from aq. MeOH to yield poilaneic acid (37 g), mp 94–95°, $[\alpha]_D^{25}$ – 136.8° (CHCl₃; c 0.33). IR $v_{\text{max}}^{\text{nujol}}$ cm⁻¹: 3000, 1680, 1620; UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm $(\log \varepsilon)$: 223 (4.1), 245 (sh), 255 (sh); ¹H NMR (100 MHz, CDCl₃): δ 0.80 (3 H, d, J = 6.5 Hz), 0.83 (3 H, d, J = 6.5 Hz), 1.66 (3 H, t, $J = 1.5 \,\mathrm{Hz}$), 1.82 (3 H, t, $J = 1.5 \,\mathrm{Hz}$), 1.5–2.5 (11 H, m), 3.05 (1 H, ddd, J = 6.0, 9.5, 15.5 Hz), 5.21 (1 H, dd, J = 9.5, 15.5 Hz), 5.56 (1 H, dd, J = 6.0, 9.5 Hz), 6.04 (1 H, dd, J = 4.5, 6.5 Hz), 6.05 (1 H,d, J = 15.5 Hz); ¹³C NMR (25.2 MHz, CDCl₃): δ 14.51 (q), 19.38 (q), 19.98 (q), 20.98 (q), 25.92 (t), 26.27 (t), 29.52 (t), 32.15 (d), 32.78 (t), 38.58 (t), 47.96 (d), 125.73 (d), 128.04 (d), 128.88 (s), 130.54 (d), 131.00 (s), 131.30 (d), 135.17 (s), 147.81 (d), 173.69 (s). MS (probe)

75 eV m/z (rel. int.): 302 (27), 259 (17), 213 (17), 133 (50), 121 (53), 119 (53), 107 (70), 105 (70), 93 (100), 91 (80), 81 (60), 79 (60). (Found: C, 79.43; H, 10.00. $C_{20}H_{30}O_2$ requires: C, 79.47; H, 9.93%).

Esterification of 1a. A soln of 1a (4.5 g) and MeI (2 ml) in dry DMF (20 ml) was stirred in the presence of K_2CO_3 (1.8 g) at ambient temp. overnight. After usual work-up, the residue was distilled to give 1b (4.4 g), bp 160-170° (bath temp.)/0.2 mm Hg. IR $v_{\text{max}}^{\text{liquid}}$ cm⁻¹: 1715, 1615, 1610, 1430, 1380, 1245, 1200; ¹H NMR (100 MHz, CDCl₃): δ 0.80 (3 H, d, J = 6.5 Hz), 0.83 (3 H, d, J = 6.5 Hz), 1.66 3 H, s (br), 1.80 (3 H, s (br), 1.5-2.6 (11 H, m), 3.02 (1 H, m), 3.72 (3 H, s), 5.10 (1 H, dd, J = 9.0, 15.5 Hz), 5.16 (1 H, dd, J = 3.5, 11.0 Hz), 5.52 (1 H, m), 5.81 (1 H, m), 6.07 (1 H, d, J = 15.5 Hz); MS (probe), 75 eV, m/z (rel. int.): 316 (22), 273 (10).

213 (26), 133 (50), 121 (61), 119 (61), 107 (74), 105 (74), 93 (100), 91 (82), 81 (61), 79 (61). (Found: C, 79.75; H, 10.13. $C_{21}H_{32}O_{2}$ requires: C, 79.61; H, 10.20%).

Catalytic hydrogenation of **1b**. A soln of **1b** (0.150 g) in MeOH (15 ml) was shaken over Pt (0.015 g) under H_2 . After filtration, the residue was distilled to give **2** (0.140 g), bp 130° (bath temp.)/0.15 mm Hg. IR $\nu_{\rm max}^{\rm liquid}$ cm⁻¹: 1740, 1465, 1435, 1380, 1265, 1190, 1160; MS (probe), 75 eV, m/z (rel. int.): 324 (100), 291 (25). (Found: C, 77.89; H, 12.29. $C_{21}H_{40}O_2$ requires: C, 77.78; H, 12.35%).

Conversion of 1b to (-)-cembrene. (a) A soln of 1b (1.3 g) in dry Et_2O (10 ml) was added to a soln of LiAlH₄ (0.9 g) in dry Et_2O (20 ml) at 0°, and then stirred at ambient temp. for 2 hr. After usual work-up, the residue was subjected to Si gel

chromatography. Elution with C_6H_6 -EtOAc (20:1) gave colourless crystals, which were recrystallized from n-hexane to yield 3 (0.84 g), mp 92–94°. IR $v_{\rm max}^{\rm nujol}$ cm $^{-1}$: 3250, 1650, 1600; 1 H NMR (100 MHz, CDCl₃): δ 0.80 (3 H, d, J = 6.5 Hz), 0.85 (3 H, d, J = 6.5 Hz), 1.58 (3 H, t, J = 1.4 Hz), 1.78 (3 H, t, J = 1.5 Hz), 1.6–2.7 (11 H, m), 3.00 (1 H, m), 4.00 (1 H, d, J = 12.0 Hz), 4.23 (1 H, d, J = 12.0 Hz), 5.0–5.8 (4 H, m), 6.06 (1 H, d, J = 15.5 Hz); 13 C NMR (25.2 MHz, CDCl₃): δ 14.39 (q), 19.76 (q), 19.88 (q), 20.83 (q), 22.78 (t), 26.20 (t), 27.96 (t), 32.40 (t), 32.79 (d), 38.68 (t), 48.50 (d), 59.15 (t), 125.35 (d), 127.00 (d), 129.36 (d), 130.24 (d), 130.55 (s), 130.68 (d), 134.89 (s), 135.86 (s); UV $\lambda_{\rm max}^{\rm EOH}$ nm (log ε): 238 (sh), 244 (4.4), 253 (sh); MS (probe), 75 eV, m/z (rel. int.): 288 (21), 270 (14), 245 (14), 227 (26), 133 (57), 131 (36), 121 (55), 119 (69), 93 (100), 91 (90), 81 (81), 79 (79). (Found: C, 83.33; H, 11.11. $C_{20}H_{32}$ O requires: C, 83.45; H, 11.07%).

(b) A mixture of 3 (0.396 g), MeSO₂Cl (0.4 ml), and pyridine (0.2 ml) in dry CH₂Cl₂ (0.4 ml) was stirred at ambient temp. overnight. After usual work-up, the residue (0.5 g) in dry Et₂O (10 ml) was added to a soln of LiAlH₄ (0.050 g) in dry Et₂O (10 ml) with cooling at 0° and stirred at ambient temp. for 5 hr. After usual work-up, the n-hexane extract (0.2 g) was purified by prep. TLC (n-hexane) to yield (-)-cembrene (0.100 g), which was recrystallized from EtOH, mp 58-58.3°, $[\alpha]_D^{25}$ -232° (CHCl₃; c0.41). IR $v_{\text{max}}^{\text{CS}_2}$ cm⁻¹: 2930, 1660, 1640, 1385, 1160, 965, 942, 915, 840, 790; ¹H NMR (100 MHz, CCl₄): δ 0.80 (3 H, d, J = 6.5 Hz), 0.85 (3 H, d, J = 6.5 Hz), 1.48 (3 H, s (br)), 1.57 (3 H, s (br)), 1.75(3 H, s (br)), 1.6-2.5 (11 H, m), 3.00 (1 H, m), 4.7-5.7 (4 H, m), 6.04 (1 H, d, J = 15.3 Hz); ¹³C NMR (25.2 MHz, CDCl₃): δ 14.34 (2q), 19.96 (2q), 20.88 (q), 23.60 (t), 26.35 (t), 27.92 (t), 32.96 (d), 36.67 (t), 39.04 (t), 48.39 (d), 125.75 (d), 126.12 (d), 126.92 (d), 130.83 (d), 131.24 (d), 131.50 (s), 132.81 (s), 135.50 (s); UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 245 (4.1); MS (probe), 75 eV, m/z (rel. int.): 272 (27), 229 (43), 161 (30), 147 (27), 133 (37), 121 (54), 119 (67), 107 (72), 105 (72), 95 (36), 93 (100), 91 (61), 81 (85), 79 (47), 77 (32), 69 (40), 67 (34), 55 (54), 41 (67). (Found: C, 88.52; H, 11.89. C₂₀H₃₂ requires: C, 88.24; H, 11.76%).

Epoxidation of 1b. To a soln of 1b (3.0 g) in dry CH₂Cl₂ (30 ml) was added 85 % m-chloroperbenzoic acid (2.8 g) in small portions at -20° . After the addition was complete, the reaction mixture was stirred at ambient temp. for 2 hr and then treated with satd NaHCO₃. The CH₂Cl₂ layer, after usual work-up, was subjected to Si gel chromatography. Fraction 1, eluted with C₆H₆, contained 5 (0.270 g), colourless oil. Fraction 2, eluted with C_6H_6 -EtOAc (20:1) contained 6 (0.142 g), which recrystallized from cold n-hexane. Fraction 3, eluted with C_6H_6 -EtOAc (5:1), contained **7a** (0.150 g), colourless oil. Fraction 4, eluted with C₆H₆-EtOAc (1:1), contained 7b (0.850 g), colourless oil. 5: ${}^{1}H$ NMR (60 MHz, CDCl₃): δ 1.11, 1.22 (3 H, s), 1.67 (3 H, s), 3.70 (3 H, s); UV λ_{max}^{EtOH} nm (log ϵ): 220 (4.2). (Found: C, 75.67; H, 12.85. C₂₁H₃₂O₃ requires: C, 75.90; H, 12.70%). 6: mp 83.5-84°; IR $v_{\text{max}}^{\text{nujol}}$ cm⁻¹: 1715, 1645, 1460, 1200; UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 225 (sh), 237 (4.4), 240 (sh), 250 (sh); ¹H NMR (100 MHz, CDCl₃): δ 0.80 (3 H, d, J = 6.5 Hz), 0.83 (3 H, d, J = 6.5 Hz), 1.37 (3 H, s), 1.84 (3 H, s (br)), 1.3-2.6 (12 H, s)m), 2.70 (1 H, m), 2.73 (1 H, d(br), J = 7.0 Hz), 3.74 (3 H, s), 5.31 (1 H, dd, J = 10.0, 15.5 Hz), 5.5-5.8 (2 H, m), 6.10 (1 H, d, $J = 15.5 \,\mathrm{Hz}$; MS (probe), 75 eV, m/z (rel. int.): 332 (55), 257 (27), 149 (83), 135 (37), 120 (49), 107 (95), 105 (53), 93 (100), 91 (65), 81 (63), 79 (80). (Found: C, 75.94; H, 12.71. C₂₁H₃₂O₃ requires: C, 75.90; H, 12.70%). **7a**: IR $v_{\text{max}}^{\text{liquid}}$ cm⁻¹: 3500, 1715, 1640, 1440, 1385, 1250, 1210; ¹H NMR (60 MHz, CDCl₃): δ 0.80 (3 H, d, $J = 6.5 \,\mathrm{Hz}$), 0.83 (3 H, d, $J = 6.5 \,\mathrm{Hz}$), 1.67 (3 H, s), 1.75 (3 H, s), 1.2-2.8 (12 H, m), 3.75 (3 H, s), 4.56 (1 H, s (br)), 5.4-6.2 (4 H, m), 7.4-7.6 (2 H, m), 7.9-8.2 (2 H, m). (Found: C, 68.51; H, 7.70; Cl, 7.14. C₂₈H₃₇ClO₅ requires: C, 68.77; H, 7.57; Cl, 7.29 %). **7b**: IR v^{liquid} cm⁻¹: 3430, 1720, 1640, 1440, 1390, 1210; ¹H NMR

(100 MHz, CDCl₃): δ 0.80 (3 H, d, J = 6.5 Hz), 0.83 (3 H, d, J = 6.5 Hz), 1.36 (3 H, s), 1.65 (3 H, s), 1.6-2.6 (12 H, m), 3.50 (1 H, dd, J = 2.0, 7.5 Hz), 3.73 (3 H, s), 5.29 (1 H, t (br), J = 7.5 Hz), 5.44 (1 H, dd, J = 8.0, 15.5 Hz), 5.66 (1 H, d, J = 15.5 Hz), 5.76 (1 H, dd, J = 6.0, 7.0 Hz); MS (probe), 75 eV, m/z (rel. int.): 350 (8), 332 (12), 276 (48), 257 (44), 177 (98), 169 (100), 95 (84), 93 (76), (Found: C, 71.82; H, 9.60. $C_{21}H_{34}O_4$ requires: C, 72.00; H, 9.71 %).

Oxidative cleavage of 7b. To a soln of 7b (0.300 g) in dioxane (4 ml) was added an aq. soln of NaIO₄ (0.400 g) and the mixture was stirred at ambient temp. for 1 hr. The reaction mixture was poured into H₂O and extracted with Et₂O. After usual work-up, the Et₂O extract was added to a soln of NaBH₄ (0.050 g) in EtOH (5 ml). After stirring at ambient temp. for 30 min and usual workup, the Et₂O extract was subjected to Si gel chromatography. Elution with C₆H₆-EtOAc (1:1) gave 8 (0.161 g), colourless oil. IR $v_{\text{max}}^{\text{liquid}}$ cm⁻¹: 3520, 1715, 1630, 1440, 1380, 1200, 1155; ¹H NMR (100 MHz, CDCl₃): δ 0.81 (3 H, d, J = 6.5 Hz), 0.86 (3 H, d, J = 6.5 Hz), 1.27 (3 H, d, J = 7.0 Hz), 1.64 (3 H, s (br)), 1.3-2.7 (12 H, m), 3.60 (2 H, t, J = 7.0 Hz), 3.72 (3 H, s), 4.27 (1 H, m), 5.1-5.8 (4 H, m); MS (probe), 75 eV, m/z (rel. int.): 352 (2), 334 (2), 300 (33), 289 (26), 257 (50), 229 (67), 161 (48), 121 (56), 107 (67), 95 (74), 81 (100). (Found: C, 71.51; H, 10.29. C₂₁H₃₆O₄ requires: C, 71.59; H, 10.23%).

Oxidation of 8 with MnO₂. A mixture of 8 (0.290 g) and MnO₂ (3.0 g) was refluxed in CHCl₃ (15 ml) for 4 hr. After usual work-up, the residue was subjected to Si gel chromatography. Elution with C_6H_6 -EtOAc (5:1) gave 9 (0.149 g), colourless oil. IR $v_{\rm max}^{\rm liquid}$ cm⁻¹: 3430, 1715, 1675, 1610; UV $\lambda_{\rm max}^{\rm ElOH}$ nm (log ε): 222 (4.1); ¹H NMR (100 MHz, CDCl₃): δ 0.85 (3 H, d, J = 6.5 Hz), 0.89 (3 H, d, J = 6.5 Hz), 1.64 (3 H, s (br)), 2.26 (3 H, s), 1.3–2.2 (8 H, m), 2.29 (2 H, td, J = 6.0 Hz), 3.73 (3 H, s), 5.14 (1 H, t, J = 7.0 Hz), 5.81 (1 H, t, J = 7.5 Hz), 6.02 (1 H, d, J = 16.0 Hz), 6.57 (1 H, dd, J = 9.2, 16.0 Hz); MS (probe), 75 eV, m/z (rel. int.): 350 (13), 318 (33), 299 (49), 287 (40), 225 (28), 168 (80), 106 (80), 84 (100), 80 (93). (Found: C, 72.14; H, 9.75. $C_{21}H_{34}O_4$ requires: C, 72.00; H, 9.71%).

Acknowledgements—We are indebted to Mr. Ananta Laophanich of Asian TJD Enterprize Ltd., Thailand and Mr. Chana Promdej of Royal Forest Department in Thailand for collection of the plant.

REFERENCES

- Sato, A., Ogiso, A. and Kuwano, H. (1980) Phytochemistry 19, 2207.
- 2. Kitazawa, H. and Ogiso, A. (1981) Phytochemistry 20, 287.
- 3. Shaw, A. (1972) Kew Bull. 26, 191.
- Weinheimer, J. A., Chang, C. W. J. and Matson, J. A. (1978) Fortschr. Chem. Org. Naturst. 36, 285.
- 5. Favi, B. N. and Faulkner, D. J. (1978) J. Org. Chem. 43, 2117.
- Bowden, B. F., Coll, J. C., Hicks, W., Kazlauskas, R. and Mitchell, S. J. (1978) Aust. J. Chem. 31, 2702.
- Pardhy, R. S. and Bhattacharyya, S. C. (1978) Indian J. Chem. Sect. B 16, 171.
- 8. Klein, E. and Obermann, H. (1978) Tetrahedron Letters 349.
- Groweiss, A., Kashman, Y., Vanderah, D. J., Tursch, B., Cornet, P., Braekman, J. C. and Dolozse, D. (1978) Bull. Soc. Chim. Belg. 87, 277.
- Kashman, Y., Bodner, M., Loya, Y. and Benayahu, Y. (1978)
 Isr. J. Chem. 16, 1.
- Bowden, B. F., Coll, J. C., Michell, S. J. and Stokie, G. J. (1979) Aust. J. Chem. 32, 635.

1918 A. Sato et al.

 Weiner, D. J., Meinwald, J., Prestwich, G. D., and Miura, I. (1979) J. Org. Chem. 44, 3950.

- 13. Kobayashi, M., Nakagawa, T., and Mitsuhashi, H. (1979) Chem. Pharm. Bull. 27, 2382.
- 14. Yamada, Y. (1979) Chem. Pharm. Bull. 27, 2394.
- 15. Frincke, J. M., Milntyre, D. E. and Faulkner, D. J. (1980) Tetrahedron Letters 735.
- Uchio, Y., Nakayama, M., Hayashi, S. and Hase, T. (1980)
 41th Natl. Meet. Chem. Soc. Jpn (Osaka) p. 1096.
- Dauben, W. J., Thiesen, W. E. and Resnick, P. R. (1965) J. Org. Chem. 30, 1693.
- 18. Prasada, R. and Sukh, D. (1976) Tetrahedron 32, 1437.
- 19. Kimland, J. and Norin, T. (1968) Acta Chem. Scand. 22, 943.